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A breakage model for the statistical distribution of the dissipation rate is proposed : 
this model, B-model, is a modification of the Gurvich & Yaglom model (1967) taking 
the criticism of Mandelbrot (1974) into account. The B-model uses the beta 
distribution for the breakage coefficient a. The universal power spectrum of velocity 
for the B-model has a slightly flatter slope (positive correction) than the ‘ -5’ in 
contrast to all other previously proposed models, and this positive correction agrees 
with a theoretical argument made in Yakhot et al. (1989). The B-model predicts the 
structure functions of velocity observed by Anselmet et al. (1984) remarkably well 
without an empirical fit to the data. 

1. Introduction 
In  his refinement of his original 1941 hypotheses Kolmogorov (1962) proposed a 

lognormal model for the probability density function (p.d.f.) of the dissipation rate, 
8. Because the original hypotheses (Kolmogorov 1941 a) were contended against 
Landau’s argument in which the hypotheses overlooked the statistical characteristics 
of e, the refinement was required. Gurvich & Yaglom (1967 ; hereinafter referred to  
as GY) then derived the theory of lognormality for E extending Kolmogorov (1962). 
This theory is an application of breakage model (Kolmogorov 1941b) in the 
turbulence energy cascade. The lognormality of E has been extensively studied by 
various researchers and seems successful as a first-order approximation model for the 
statistics of turbulence. Mandelbrot (1974), however, argued that the theory is not 
useful in estimating higher-order moments of turbulence statistics, and he proposed 
a fractal model for the self-similarity of turbulent cascade, which is analogous to the 
breakage model. Both models describe the statistics of turbulent field : p.d.f. of e,  the 
power spectrum and the structure function of turbulent velocity. 

Since p.d.f. determines statistics of a random variable, the lognormality of e is 
helpful because this p.d.f. requires only two parameters : the mean and the variance 
of loge. Having estimated these parameters we can infer any statistics of e. The 
distribution of e also modifies Kolmogorov’s original universal slope, the ‘ -$’, of 
turbulent velocity spectrum in the inertia subrange (Kolmogorov 1962). The GY 
lognormal model (hereinafter referred to as the GY model) predicts a negative 
correction; namely, the universal slope is steeper than the ‘-5’.  All previously 
proposed models, including recent multifractal models, show a negative correction as 
well. Unfortunately, this deviation from the ‘ -5’ is presumably undetectable, no 
researcher has yet reported the departure of a power spectral slope from the ‘ -5’ 
slope. Recently Yakhot, She & Orszag (1989) argue that such a correction (negative) 
may be inconsistent with the dynamics of turbulence. They suggest that the 
correction to the ‘ -Q’ should be a positive, namely a flatter slope than the ‘ -5’. We 
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see that a modified GY model presented in this work can predict a positive correction 
to the ' -:'. 

The velocity structure function is another way to study the statistical 
Characteristics of turbulence. Since the turbulent velocity in the inertial subrange 
only depends on E (Kolmogorov 1962), the structure function is directly related to the 
p.d.f. of E, therefore, a proper model for the p.d.f. of E should describe the statistics 
of turbulent velocity. Anselmet et al. (1984) report higher-order structure function of 
turbulent velocity up to 18th order, and they show that both the GY model and the 
/?-model (a fractal model) are inconsistent with their observations. A random p- 
model of Benzi et al. (1984) - a multifractal model - improves the failure of the p- 
model jitting the observed higher-order moments. An attempt is made in this study 
to improve the GY model, and a new model is tested against the data in Anselmet 
et al. (1984). 

The purpose of this study is to derive a new lognormal model taking the theoretical 
problem, pointed out by Mandelbrot (1974, 1976) for the GY model, into 
consideration. In  order to identify this problem we briefly review the GY theory in 
the next section, then the new model (B-model) is derived. Both the GY model and 
the B-model are lognormal models and they differ, in principle, from a fractal model. 
Therefore, a brief summary of the fractal model is also presented. Section 3 compares 
the B-model to the GY-model and the fractal model. The conclusions of this study 
can be found in the last section. 

2. Breakage models 
2.1. The Gurvich-Yaglom model 

In order to identify the theoretical deficiency in the GY model we briefly review this 
theory. The original idea of the breakage model is to explain the distribution of 
particles, which are successively crushed into several pieces a t  each breakage step 
(Shimizu & Crow 1988). Kolmogorov (1941b) showed the distribution is asymp- 
totically lognormal after several breakages. GY, then, applied this idea to a 
turbulent energy cascade process to describe the statistical characteristics of E. In  
principle the breakage model is based on a purely statistical consideration, the 
interpretation of this model is the significant contribution of GY. 

Suppose the domain of an energy containing eddy size, L ,  is Q and is proportional 
to L3. The domain average of E is (E):  

where the local dissipation rate E(X) is 

and the strain rates are 

S i j ( X )  = - (al*,(x) - +- auf(x)) for i , j  = 1, 2 and 3, 
2 ax, axi (3) 

and both the turbulent velocity components, ui, and the coordinate system, xi, follow 
the conventional index notation, and x is a spatial vector (xl, x2, x3). The original 
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domain is successively divided into a subdomain, qi,  whose lengthscale is l i ,  and the 
average of e in a volume qi is denoted as e i :  

The ei is a random variable representing the average of dissipation rate within qi. The 
breakage coefficient ai is defined as a ratio of two successive e i :  

ai=eie;21 f o r i = l ,  ..., Nb, (5 )  

where Nb is the number of breakage processes. In  the GY model, the ratio of 
lengthscales li-l and 1, for two successive breakages is a constant : 

h = zi-ll;l, (6) 

thus, the breakages may not represent the actual breakdown of turbulent eddies. 
This is merely a geometrical decomposition of the spatial domain. We set l N b  = rand  
eNb = E ,  for the sake of consistency with other authors. Then a t  the Nbth breakage 
the volume average dissipation rate in a single cell, e,, can be expressed in terms of 

N b  

(E) by 

log E, = log (e) + C log ai. (7) 
i- 1 

By virtue of Kolmogorov's (1962) third hypothesis the set of {log a,, . . . , log aN,} is 
mutually independent identically distributed random variables for velocity com- 
ponent in the inertial subrange. The GY model assumes that the random variable 
log ai follows a normal distribution. GY adopted the central-limit theorem to show 
that the random variable E, asymptotically distributes as lognormal ; however, log ai 
is Gaussian according to GY's assumption so that it is not necessary to apply the 
central-limit theorem to the theory - a sum of normal distributions is always normal. 
Another implicit assumption being made in the GY model is that  the probability of 
an ai = 0 event is zero, in other words, all of N, = (& / r3 )  cells contain a dissipating 
region. As long as turbulent flows exist in the field, the dissipation of the kinetic 
energy should take place a t  a certain magnitude everywhere ; therefore, this 
assumption seems realistic. On the other hand, the fractal model, which is 
summarized later, assumes that a certain fraction of the turbulent field is occupied 
by a non-dissipating region. 

Applying the laws of probability, the mean m, and variance a," of loge, are 

m,. = log (6) +clog, (Lr-'), 
a," = p log, (Lr-l), 

where log, (Lr-l) is the number of breakage processes Nb, and the universal constants 
.$ and p are the mean and the variance of the random variable loga: 

E = Jwog a],  
p = E [ ( l ~ g a - ~ ) ~ ] .  

Thus, p is inherently positive. GY added spatial dependence terms in (8) and (9), 
which we ignore here because these terms are irrelevant to our discussion. They also 
approximated the number of breakages log, (Lr-l) x log, (Lr-l). This approximation 
requires either h x 3 or the lengthscale r satisfying 7 < r < L. GY considers the latter 
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case, as a result, their lognormality is strictly applicable in the inertial subrange of 
the velocity spectrum. Despite the fact that h determines the number of breakage 
steps, which may relate to the actual breakdown of a large eddy to smaller eddies, 
less attention has been paid to this parameter. Most fractal models, for instance the 
P-model, assume h = 2 (Frisch, Sulem & Nelkin 1978). 

The geometry of the breakage process constrains the expected value of CL to be 
unity as discussed in GY: 

E[a] = 1. (12) 

Since the GY model assumes a lognormal distribution for a, this constraint is 
automatically satisfied if ( = -$; consequently, the volume average dissipation rate 
does not depend on r .  In  fact GY assume ( = -+,u, and this assumption has let 
everyone use ,u as the intermittency coefficient. The assumption of lognormality for 
a is convenient, but this assumption results in various inconsist,encies as presented 
by Mandelbrot (1974). For instance, Mandelbrot states the moments of 8, exist up to 
a finite order, and the structure function of the velocity is a convex function of the 
order. Mandelbrot (1976) states, ‘one must not, and we shall not, replace loga by its 
Gaussian approximation ’. 

2.2. B-model 

Since the major problem in the GY model is the assumption of lognormality for a,  
we attempt to improve the GY model using an alternative distribution for a. Suppose 
as an extreme case the entire dissipation takes place in a single cell among all 
subdivided cells, the maximum value of a is amax = A3. This must be a physically 
constrained absolute maximum value because any singular points possibly generated 
from the Navier-Stokes equation should be smeared out by viscosity. Therefore, a 
must satisfy 0 < a < a,,,, and the distribution must be defined in this finite domain. 
A possible distribution satisfying these conditions is the beta distribution (Mood, 
Graybill & Boes 1974), which is defined in a finite domain by three independent 
parameters, and can be applied to the variety of random variables. Hereinafter our 
model is called the B-model. Although no prior justification exists to use the beta 
distribution, a t  least this distribution satisfies the physical constraint for amax ; all 
other well-known continuous distributions are supported in an infinite domain. 
Recently Hosokawa (1989) applied a square-root exponential distribution for a 
arguing that velocity gradients and vorticity spatially distribute exponentially, but 
the domain of this distribution is also infinite. 

A random variable a of the beta distribution supported in the range (0, amax) has 
the following p.d.f. 

f,(a; a ,  b ,  amax) = B(a, b)-l aa-l(a,ax-~)b-l for (0, amax), (13) 

where a and b are positive parameters, and B(a, b)  is the beta function. As we stated 
earlier the geometrical constraint of the breakage process requires ELa] = 1, thus the 
parameter b must be equal to (amax - 1) a. The universal constants 6 and ,u for this 
distribution are 

( = E[log a] 

= log amax + y ( a )  - y ( ( a m a x -  1) a ) ,  (14) 
and 

= E[(loga-()2] 

= (!J‘(a)- ‘Y(amaxa))2+ Y”(a)- Y ” ( a m a x a ) - { y ( a ) -  y((amax-1)a)}2: (15) 
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where Y(z) is the psi function (Gradshteyn & Ryzhik 1980) and expressed in terms 
of the Gamma function T(z): 

and 

Y(z)  = d{logr(x)}/dx, 

Y ( z )  = d2{logr(z)}/dx2. 

Therefore, 6 and y can be equated with a parameter a for a given E,,, = h3. 
GY derived the structure function of volume average dissipation rate, R,(r), under 

the assumption that loga is Gaussian. We abandon this assumption, but the final 
results (spectral slopes, etc.) are similar. For the sake of simplicity, we consider a one- 
dimensional case. The structure function, R,(r) = E[e,(x) e , (z+r)] ,  can be equated to 
form the second-order moment of e, (Monin & Ozmidov 1985, p. 70) as follows: 

M2 = (2/r2) r R , ( r ” )  dr” dr’. 
0 0  

where 6 is the intermittency coefficient and is equal to 2(+2y. Note that we assume 
the breakage process is applicable in the inertial subrange of velocity power 
spectrum, so we adopt the same approximation of log,(L/r) x log, (L /r )  as done in 
the GY model. The corresponding dissipation spectrum S,( k) follows 

S,(k) cc k-l+’, (20) 
and this equation reduces to 

S,(k) cc k-l+” 

for the GY model. All previous authors interpret y as the intermittency coefficient 
instead of 6, and this difference is crucial for our discussion in this paper. 

The GY model leads to the same universal spectral slope of turbulent velocity with 
Kolmogorov (1962). The B-model, however, changes the power dependence law 
slightly. The ‘ -5’  law becomes 

E ( k )  = B(+$ k-%5+/’/3) (22) 

where B is a universal constant. The nth order structure function of velocity is 

where A ,  is a constant. 

2.3. Fractal models 

Recent developments in the area of fractals (Mandelbrot 1982) shed light on the 
intermittency of turbulence (Mandelbrot 1976 ; Procaccia 1984 ; Turcotte 1988). A 
fractal is a self-similar process model and is tightly related to breakage models. In  
order to compare the fractal model to  the GY model and the B-model, we briefly 
summarize these models. 

Suppose a cubic domain L3 is divided into N, number of r3 cells, and the dissipation 
is taking place only in Nf cells. The fractal dimension D is defined as follows: 

Nf = (Lr-l)D. (24) 
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The average of E in a single cell, { E , } ,  can be expressed as: 

{ E , }  = (s)N,N;1 = ( E )  (Lr-1)3-D, (25) 

where { - 1 denotes an average over non-empty cells. An average over all available 
cells, ( e r ) ,  is unchanged from (B); thus, the equivalent definition of breakage 
coefficient, a, is always one. The probability of finding non-empty cells is ( L T - ' ) ~ - ~ ,  
therefore, D = 3 means the probability is one. Mandelbrot (1976) argues that D must 
be larger than two for a topological reason. The fractal dimension D for a fully 
developed turbulence cannot exceed three from a theoretical point of view (Foias, 
Manley & Teman 1987), so 2 < D < 3, which is rather a wide range. Hentschel & 
Procaccia (1983) suggest 2.5 < D < 2.75. Renzi & Vulpiani (1980) estimated 
D x 3 - i  from the /?-model (Frisch et al. 1978). A recent work by Benzi et al. (1984) 
suggests D = 2.91 from a modified /?-model. Sreenivasan & Meneveau (1986) state 
D = 2.6. 

The fractal dimension, D, is related to the intermittency coefficient, 0 (Benzi et al. 
1984) : 

D = 3-0. (26) 

Thus, there is an interconnection between the lognormal model and the fractal 
model. But despite the fact that  the expression of ( 6 , )  for the lognormal model, 
equation (7), and { E , }  for the fractal model, equation (25), are similar the basic idea 
behind them is quite different. For the lognormal model we came up with a 
continuous probability density function, lognormal distribution ; on the other hand, 
we deal with a discrete probability law for the fractal model. We also assume that a 
certain finite value of E exists everywhere in the domain for the lognormal model, but 
for the fractal model there are ( ~ 5 r - l ) ~ - ( L ~ - l ) ~  numbers of cells which are non- 
dissipating regions. Frisch et al. (1978) note that the P-model is based on nonlinear 
energy transfer rather than a dynamically irrelevant local dissipation rate, such as 
the case of the lognormal models. On the other hand, Levich (1987) mentions that the 
fluctuations of nonlinear transfer terms are similar to the fluctuation of energy 
dissipation rate. Values of nonlinear energy transformation a t  a certain time may not 
be similar to local dissipation rate a t  that  time, for instance vorticity and dissipation 
rate do not necessarily agree, but it seems reasonable to assume the nonlinear 
transfer and the dissipation are statistically identical. 

An application of the idea of fractal led Frisch et al. (1978) to derive the /?-model 
by incorporating the dynamics of turbulent energy cascade. They apply the breakage 
process in wavenumber domain assuming the turbulent energy cascade takes place 
locally in an adjacent wavenumber. Frisch et al. (1978) introduced the coefficient 
/3 = ADP3 in the energy cascade: 

€6-1  = P E i  (27) 

where A = l i -Jl i  is set to 2 in the P-model. They assume that a fraction /? of inertia 
energy can be transferred from a wavenumber 1 ~ 2 ~  to an adjacent wavenumber l ; l .  

According to this model the decomposition of the original space is rather 
deterministic and dissipating regions become less space filling as the lengthscale 
reduces (Paladin & Vulpiani 1987). 

Because the @-model has been compared to other models frequently, we also 
compare the P-model to the B-model derived in this study. The inconsistency in the 
higher-order moments exists in most intermittency models; this may well be 
incidental, so we should not take such an unfortunate nature too seriously as a 
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B-model GY -model P-model 

e 2 t + 4  P bt 
x it+& - L& -bt 
Cn &-&n&-&dp $-&n(n-3) +-b(n-3)? 

t Interpretation of ,u is not the same with previous reports thus $ should be read as 
' conventional ' p. 

TABLE 1. List of power law exponents for each model 

reviewer suggested. But without improving the existing models we may not be able 
to gain a further insight into the structure of turbulence. 

An improvement for the P-model has been attempted by generalizing the 
coefficient P. Benzi et at. (1984) introduced a random P-model allowing P to  be a 
random variable. Their extension is a multifractal set which has recently become 
popular, Benzi et al. (1984) propose an empirical discrete probability density function 
for P :  

f p ( P ; c )  = C S ( P - O . ~ ) + ( ~ - C ) S ( P - ~ ) ,  (28) 

where c is a parameter. This idea is the exact analogy to the probability density 
function of a for the lognormal model. 

3.4. Summary of modeis 
Since we have presented three breakage models, one of them being the fractal model, 
we briefly summarize these models: ( a )  the GY model, (6) the B-model, ( c )  the 
P-model. 
( a )  The power law dependence on the structure function of dissipation is 

R,(r) = E[s,(z) s,(z+r)] cc T-@, (29) 

S,(k) cc k-'+@. (30) 

E ( k )  cc k-i+x. (31) 

R,(r) cc ( € ) " I 3  r - c n .  (32) 

and the corresponding dissipation spectrum is 

(6) The power law dependence on the velocity spectrum is 

( c )  The nth order structure function of velocity is 

Table 1 shows the power law exponents for each model. 

3. Discussions 
In  this section we compare the B-model to  the GY model and the P-model. The 

intermittency coefficient, 19, can be estimated from either (29) or (30) and takes the 
major role of the breakage models. The reported values of I9 (table 2) vary between 
0.2 and 0.6. Levich (1987) notes, 'Usually, it has been reported as close to 0.4 - 0.5. 
Recently, it has been approximately settled as 0.15 < 0 < 0.25, i.e. as much smaller.' 
The purpose of this study is not to estimate 8, so we will assume that 0.2 is the most 
plausible value. Anselmet et al. (1984), however, suggest that  I9 can also be close to 
0.25, so we consider this value as the secondary candidate. 

7 FLM 219 
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2.2 

2.0 

1.8 

1.6 
p.d.f. 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4- 

0.2 

0 

Source 

Pond & Stewart (1965) 
Gurvich & Yaglom ( 1  967) 
Van Atta & Chen (1970) 
Stewart et al. (1970) 
Belyaev et aE. (1975) 
Van Atta & Yeh (1975) 
Fujisaka & Mori (1979) 
Benzi & Vulpiani (1980) 
Van Atta & Antonia (1980) 
Nelkin (1981) 
Antonia et al. (1981) 
Hentschel & Procaccia (1983) 
Anselmet et al. (1984) 
Benzi et al. (1984) 
Sreenivasan & Meneveau (1986) 

- 

- 

- 

- 

- 

- 
- i '+, 

i 

i 

- i 

- j 
- 1 

i 

I ]  

8 

0.4 
0.4 
0.5 
0.35 
0.56+0.11 
0.22 
0.34* 
0.67 
0.25 
0.25 
0.2 
0.25-0.5* 
0.2k0.05 
0.09* 
0.4* 

Description 

ABLt 
ABL 
ABL 
ABL 
Oceanic measurement (3G140 m) 
ABL 
Theory using /3-model 
Theory 
Laboratory experiment & ABL 
Theory 
Laboratory experiment 
Fractal dimension 
Laboratory experiment 
Fractal dimension of modified @-model 
Composite data 

t Atmospheric boundary layer. 

TABLE 2 .  List of reported intermittency coefficients 8. The value with an asterisk (*) is converted 
from the fractal dimension using equation ( 2 b ) .  Most direct measurements of 8 appear between 0.2 
and 0.5. The converted values of 8 from fractal dimension have a much wider range. This suggests 
the conversion formula may not be correct 

2'6 2.4 I- 

FIQURE 1. A comparison of lognormal distribution (chain-dot line) and beta distribution (solid line) 
for a. The scale ratio h is 5 and 0 is 0.2. The vertical thick line is a for the /3-model which is a 
S function. 
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FIGURE 2. Correction factor x for the universal spectrum slope. -, B-model; ... , GY-model; 
-.- , P-model. 

3.1. Breakage coeficient : a 
In order to give an intuitive idea of how a beta distribution differs from a lognormal 
distribution we examine both distributions for a case (0 = 0.2 and A = 5 ;  the 
Appendix provides the reason for A = 5)  in figure 1. Both distributions have almost 
negligible probability for a > 3, and most.realizations of a occur between 0 and 2. 
The lognormal distribution has a longer tail than that of the beta distribution, but 
the peak of the p.d.f. is about half of the beta distribution. The mode of the beta 
distribution occurs at a = 0.96. The p.d.f. of a for the P-model is a delta function, 
namely &(a- 1) which is a deterministic value. 

A physical interpretation of a is that the energy transformation of one eddy to the 
next generation is saturated in the wavenumber space at a constant rate (6) 

according to the Kolmogorov 1941 model and the P-model. This transformation of 
energy takes place locally in the wavenumber space, which may not be a correct 
assumption considering the highly nonlinear nature of turbulence (Levich 1987). On 
the other hand, the B-model and the GY model consider that the saturation is 
maintained at  a probabilistic manner satisfying E[a] = 1. 

3.2. Correction factor for universal spectrum: x 
The value of x (see equation (31)) for the B-model is positive in contrast to both the 
GY model and the P-model which predict a negative correction (figure 2). The GY 
model, however, has only 3 YO correction at the maximum 8 = 0.5, on the other hand, 
the P-model suggests 10 YO correction in the slope, if so, the departure from the ' --!' 
slope may be detectable from experimental data (Frisch et al. 1978). 

What is physically meant by a steeper or a flatter slope than the ' -8' universal 
spectrum ? Yakhot et al. (1989) mention that the P-model has a steeper slope than the 
' -5' because turbulence becomes more and more concentrated a t  smaller scales. All 
previously proposed intermittency models, including multifractal models, predict 
that the universal spectrum is steeper than the ' -8'. Yakhot et al. (1989) propose the 
opposite possibility from a dynamical renormalization group analysis, namely the 
energy spectrum is flatter than the ' -8'. They assume that energy transformation 
can take place in both local and nonlocal fashion from a large scale to smaller scales. 

7-2 
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0 2 4 6 8 10 12 14 16 18 20 
n 

FIGURE 3. Power exponents of nth-order structure function. . . . , Kolmogorov 1941 (the ' -;' slope) ; 
-.- , /?-model; -. .-, random 8-model; -, B-model; ---, GY-model. Two values of 0 are 
used; 0 = 0.2 (thick lines) and 0 = 0.25 (thin lines) which is the upper bound of estimated 0 in 
Anselmet et ul. (1984). Experimental values are compiled from Anselmet et ul. (1984) : , Re = 
3.3 x lo4 ; A, Re = 3.5 x lo4 ; x , Re = 9.1 x lo4. A vertical bar associated with the 18th order of x 
is the error bond shown in Anselmet et al. (1984). The Reynolds number, Re, is converted from their 
Taylor scale base Reynolds number, Re, using a formula given in Levich (1987), namely Re = !Re:. 

It should be noted that the B-model is the only model, at least known to  the author, 
predicting a flatter slope than the ' -$', but the B-model does not require a nonlocal 
energy transformation. This difference should deserve attention in a future study. 

3.3. Power law coeflcient for velocity structure functions : en 
Experimental values of 5, (see equation (32)) are compiled from Anselmet et al. 
(1984) to examine the model dependence of 5,. Exponents for higher-order statistics 
up to n = 8 show little difference among three models (figure 3). For n > 12, 
experimental values of Anselmet et at. (1984) exceed the GY model. The B-model, 
however, predicts the experimental values remarkably well, and these experimental 
values are between 6 = 0.2 and 8 = 0.25 for the B-model. On the other hand, the p- 
model exhibits a larger discrepancy from the experimental values for a high-order n. 
It should be noted that because en for the GY-model is a convex function with n, it 
holds a pathological characteristic as discussed in Mandelbrot (1974), namely <, 
eventually becomes negative. The B-model holds the same tendency, but i t  is much 
slower than the GY-model. Although both lognormal models have the pathology in 
high orders, the fractal model has a physically inconsistent nature a t  zeroth order 
for the structure function, which shows an r dependence, namely f = 0. This 
contradicts the mathematical definition of the structure function. To date no model 
has been proposed to satisfy the structure function for all orders. 

Since the B-model is an improved version of the GY-model, it is fair to compare 
the counterpart of the /?-model. According to  the random p-model (multifractal) the 
power law coefficient en is expressed as follows (Benzi et al. 1984): 

5, = +n - log, E[/3'""], (33) 
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where P distributes as the p.d.f. given in equation (28). Because this p.d.f. requires 
one unknown parameter, c ,  Benzi et al. (1984) fit the data of Anselmet et al. (1984) 
to obtain c. The fitted equation is shown in figure 3 (double dot dash). This artifact 
introduces a different value of the fractal dimension from the conventional relation, 
D = 3-8. Despite the fact that 6, of the random P-model is subjective, the 
asymptotic value of t;, is interesting because it converges to  roughly four. Therefore, 
higher-order moments of turbulent velocity are more realistic than the lognormal 
models, the GY and the B-model. Recently Wong (1989) proposed a multifractal 
model extending Foias et al. (1987) and without an empirical fit his model shows a 
remarkable agreement of 6, with the data of Anselmet et al. (1984). Unfortunately 
Wong (1989) is a preliminary report so the detail is not available to us. 

It may be instructive to consider a possible improvement of the lognormal models 
for the undesirable nature of higher-order structure function. The 5, of the lognormal 
models is a convex function of n, this is because the p.d.f. of B ,  has a longer tail than 
realistically possible high 8,. Although the B-model restricts the maximum of a, the 
maximum value of er is still infinity. I n  reality no matter how strong turbulence is, 
the E, must be bounded by a finite domain. Therefore, even if the central-limit 
theorem suggests that er follows a lognormal distribution, we must terminate the 
long tail of this distribution depending on the strength of turbulence, so the 
maximum 6,. should be a Reynolds number dependent variable. Paladin & Vulpiani 
(1987) also introduce a Reynolds-number dependence in their multifractal model. A 
future study is called for this extension. 

4. Conclusions 
We modified the GY model in order to improve the lognormal model for the p.d.f. 

of the dissipation rate. As Mandelbrot (1974) identified the problem of the GY model, 
the crucial deficiency of this model is to assume a lognormal distribution for the 
breakage coefficient a. We applied the beta distribution for this coefficient and found 
that the new model, the B-model, explains experimental data of turbulence well. The 
major modifications are the following : 

(i) The B-model predicts that the universal velocity spectral slope is flatter than 
the ' -8'. This agrees with a recent theoretical result of Yakhot et al. (1989). 

(ii) Higher-order structure functions, n > 8, observed from a laboratory ex- 
periment (Anselmet et al. 1984) follow the B-model well without an empirical fit as 
done in the random P-model. 
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from discussions with R. G. Lueck and 0. M. Phillips. I am indebted to  comments 
provided by two anonymous reviewers. The editorial assistance for this manuscript 
was provided by L. Wiggins. This work was supported by the Office of Naval 
Research. 

Appendix. Numerical method to calculate parameters of the B-model 
The calculations of (14) and (15) are rather cumbersome for the arbitrary choice 

of a and A ,  but the computation can be considerably reduced if we assume the 
parameters to be integers. Then (16) and (17) can be expressed in terms of a finite 
sum of series (Gradshteyn & Ryzhik 1980). The statistics drawn from this distribution 
are the smooth function of integer a and A ,  so that a proper interpolation method 
gives any combination of real values of a and A. 
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As we mentioned in $3 the values of 0 are between 0.2 and 0.5, so we are only 
interested in this range. There is no firm foundation for choosing A. Here we assume 
A as a prime number, because any non-prime number can be generated from a 
combination of prime numbers. For a given smallest size of cell, the number of 
offspring ‘eddies ’, A 3 ,  determines the number of breakage processes, and the central- 
limit theorem requires the number of processes to be high. As a result, we hope to find 
a low prime number A from the beta distribution. We found that 5 is the lowest prime 
number which gives the minimum 0 as less than 0.2. 
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